
International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 390
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Image Processing using FPGA
Shrikant Subhash

Warghade

Manu Vyas

Mani Kunnathettu
Rajee

Prof Alex Noel
Joseph Raj

(Project Guide)

School of Electronics Engineering (SENSE), Vellore Institute of Technology,
VIT University, Vellore

Tamil Nadu, India

Abstract—Field Programmable Gate Arrays (FPGA) have become a staple of the current innovation trend because of their
flexibility and potential. A fast-growing area of FPGA implementation is Image Processing. In this paper, a ZYBO (ZYnq BOard)
Zynq-7000 series has been used for image processing. The paper elaborates on the process of developing the system functionality
through VHDL using the Xilinx Vivado 2015.1 software. The paper discusses the working of the system in detail. Furthermore the
advantages of this method, over a fully software-based implementation i.e. using MATLAB for the same operations, have been
discussed. The paper concludes by summarizing the important results.

Index Terms— ZYBO(ZYnq BOard), FPGA, real time image processing, IP,ASIC,HDMI, VGA

—————————— ——————————

1 INTRODUCTION
 In the recent years, image processing is a
field that has garnered the interest of researchers.
The reason behind it is that it has wide area of
applications; ranging from home automation to
security services and extending some military
applications.

 Parallel architecture and pipelined
processors have been used for image processing
traditionally. However they have proven
ineffective for processing high resolution video
with minimum delay. Of course, the delay
involved in image and video processing has to as
minimum as possible.

 ASICs(Application Specific Integrated
Circuit) provide a hardware solution. An ASIC is a
microchip intended for a well-specified
application. For example: A Digital Signal
Processor (DSP) or a hand-held PC. ASICs are
utilized as a part of an extensive variety of
utilizations, including automation, control,
ecological observation, Personnel Digital
Assistant(PDAs) and so on.

 Although they are very efficient for their
intended purpose, there is a disadvantage to
ASICs: they are hard-wired. Hence the flexibility is
very low meaning that if an ASIC is required to
perform any task other than what it is originally

designed to perform, it will suffer from technical
limitations. That is why Field-Programmable Gate
Arrays (FPGAs) have been adopted in many
applications, with increasing popularity. FPGAs
are having Programmable Logic Blocks (PLBs)
which provide high level of flexibility and have a
configurable architecture in the form Lookup
Tables (LUTs). This essentially means that the
FPGA can be programmed to perform a wider
variety of tasks more efficiently as compared to an
ASIC[1]. The associated overhead is the complexity
involved in using FPGAs; particularly the coding
complexity.

 For the purpose of image processing, we
adopted an FPGA in this paper. In the
implementation of the proposed system, the Zynq-
7000 processor is used.

2 PROPOSED SYSTEM ARCHITECTURE
2.1 Architecture Overview
 The Zynq SoC is divided into two separate
subsystems: The processing system (PS), and the
Programmable Logic(PL). Fig.1 shows an overview
of the Zynq SoC architecture.

 We use the HDMI source/sink port
available on the board as the input. The VGA port
is used as the output.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 391
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 Fig.1. Zynq AP SoC Architecture

The Fig 2. shows the basic block diagram for an
image acquisition and processing system. It
includes a camera as an image sensor , ZYBO
board(FPGA) as the processing element and a
generic monitor as the output (fed by the VGA
output of the ZYBO). The camera captures the
image and that captured image will be given to
ZYBO board through HDMI cable and the HDMI
ink port on the board.

Fig.2. Image acquisition and processing block diagram

The ZYBO board will process the image and the
processed image will be displayed on the monitor
through VGA.

2.2 The Block Design
1) HDMI(High Definition Multimedia Interface)

 HDMI (High-Definition Multimedia
Interface) is an exclusive audio/video interface for
exchanging uncompressed video information and
compacted or uncompressed sound information
from a HDMI-consistent source gadget. Almost all
modern devices that deal with audio/video, use
HDMI. Examples include video projectors, modern
TVs, computerized sound devices such as home
theatres etc.

 The maximum pixel clock rate for HDMI
1.0 was 165 MHz, which is sufficient to
allow image resolution up
to1080p and WUXGA (1920×1200) at 60 Hz. In the
proposed system we are performing image
processing for 720p, by using the pre-defined
settings available for the Intellectual Property (IP)
blocks available in Vivado[2].

2)DDC(Display Data Channel)

 The Display Data Channel(DDC) is a
protocol that is used for the digital communication
between the computer display and the graphics
adapter. This enables the display to communicate
its supported display modes to the adapter.

3)DVI to RGB[3]

 This IP is used to interface raw Transition-
Minimized Differential Signaling (TMDS) clock
and data channel inputs as defined in DVI 1.0
specs for Sink devices. The IP decodes the
incoming video stream and gives 24-bit RGB video
data along with the pixel clock and
synchronization signals recovered from the TMDS
link as the output for further use.

Fig.3. DVI to RGB

4) RGB to VGA[4]

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/1080p
https://en.wikipedia.org/wiki/WUXGA

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 392
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

 The input for this IP is Xilinx vid_io input.
The output is an independently customizable color
depth. The output is correctly blanked for the RGB
pixels so that it may be connected to the VGA
DAC.

Fig.4. RGB to VGA

5) AXI Bus

 Xilinx is using Advanced eXtensible
Interface(AXI) protocol for implementation
Intellectual Property(IP) cores. AXI is a part of
ARM AMBA.

Currently there are three types of AXI4 interfaces
available :

1. AXI4
2. AXI4_Lite
3.AXI4-Stream

We have used the AXI-4 interfacing the project.

3 METHODOLOGY
 The video stream incoming from the
HDMI is decoded into bits. Each of the color
channels i.e. R, G and B are represented by 8 bits
per pixel. So in total, for every pixel, there are 24
bits of data to be processed.

 In the VHDL code, we are able to
manipulate each of these 24 bits to achieve desired
effects. Such bit-level access enables us to exercise
a high degree of freedom with the code. For our
current application, the following points are of
importance –

i. The input and the output of the IP has to be 24
bits, to maintain the compatibility with the rest of
the system. So both the input and output ports
have been defined as STD_LOGIC_VECTOR (23
downto 0).

ii. In between the input and output, we implement
the MUX-based design. The interfacing of the
switches enables the user to select the desired

output.
iii. The 24 bits of the pixel are divided into 8 bits
per color channel, before any processing is done.
This is to facilitate color-specific manipulations.
iv. For the grayscale and thresholding functions,
the data type is converted into INTEGER type
before further processing. This is so because
averaging of the RGB values is required for
grayscale and subsequent thresholding; and
division cannot be performed on
STD_LOGIC_VECTOR. After the processing is
done, the data is converted back to
STD_LOGIC_VECTOR.

 We intended to implement the following
types of image processing capabilities with the
ZYBO- Only Red, Only Green, Only Blue,
Grayscale, Thresholding and Inverted image.

 In order to make the system user-friendly
and intuitive, we adopted a multiplexer-based
design. The user may use 3 switches on the board
to toggle between the various outputs. The fig.5
shows the block diagram of the 8:1 MUX for image
conversion.

Fig.5. MUX for image conversion

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 393
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

Fig. 6. ZYBO Board

The following table elaborates which type of
output will be observed for which particular
switch combination.

TABLE 1
FUNCTIONALITY OF THE MUX

FUNCTIONALITY SWITCH COMBINATIONS

S1 S2 S3

Original Image 0 0 0
Only Red 0 0 1
Only Green 0 1 0
Only Blue 0 1 1
Grayscale 1 0 0
Thresholding 1 0 1
Inverted 1 1 0

Fig.7. Original Image

Fig.8. Only Red

Fig.9. Only Green

Fig.10. Only Blue

Fig.11. Grayscale Image

Fig.12. Threshold Image

Fig.13. Inverted Image

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 394
ISSN 2229-5518

IJSER © 2016
http://www.ijser.org

4 COMPARISON WITH SOFTWARE
IMPLEMENTATION

 In order to objectively compare the
implementation of the same video processing
functions in software and hardware, we used
MATLAB. In particular, we wrote a simple
MATLAB code to take the video from the webcam
of a laptop. Then we used the rgb2gray() function
to convert the video to grayscale.

 For the same function, the VHDL code
takes the input stream, averages the RGB color
channel values, then puts the averaged value back
into the RGB streams.

 The frame rate is of prime importance for
such an application. The camera feed was set to a
resolution of 1280*720 i.e. 720p. The refresh rate of
the monitor was 60Hz. For these conditions, we
observed the following –

i. Frame rate for MATLAB implementation – 7 to
10 FPS (Frames per second)

ii. Frame rate for FPGA implementation – 30 FPS

4.1 Important highlights of hardware v/s
software approaches

1)Speed – The speeds achieved in hardware
approach are much faster than those achieved in
the software approach.

2)Complexity – Hardware approach is much more
complex to implement. Software approach is
relatively simple to implement.

3)Suitability – The type of approach to be adopted
is eventually guided by the type of application. For
development and testing of a new algorithm or
design, it is suitable that the software approach be
used. For the final implementation, hardware
approach can be used. If the output/response is
required to be very fast, it is better to use dedicated
hardware i.e. ASICs. Example – Hard real-time
systems generally will preferably be developed
using hardware, particularly ASICs. This is not to
say that 100% of the functionality resides on the
hardware; some functionality also resides on
software. However the hardware counterpart
dominates the software.

4)Cost – Hardware implementation is more
expensive.

5 CONCLUSION
 We have tried to implement simple and
basic image processing functionality with the
ZYBO FPGA in this project. In essence, this project
serves as a base for further developments. The
primary conclusion of the endeavors is that FPGAs
can work as a great development tool, especially
for high-speed image processing implementations.
The latency observed in our application is very
low.

 The other important outcome is that such
hardware implementation is better suited for
deployment of the final design, rather than as a
development tool for a new application, if the
criticality of the application in question is high.

References

[1] FPGA based Multiprocessor Embedded System for
Real-Time Image Processing, Nauman Masud,
lahanzeb Nasir, Muhammad Shahid Nazir,
Muhammad Aqil, 15th International Conference on
Control, Automation and Systems (ICCAS 2015) Oct.
13-16,2015 in BEXCO, Busan, Korea

[2] www.xilinx.com/support/.../XUPZYBO/.../ZYBO_R
M_B_V6.pdf

[3] www.digilentinc.com DVI-to-RGB (Sink) 1.6 IP Core
User Guide Revised January 21, 2016; Author Elod
Gyorgy

[4] www.digilentinc.com RGB-to-VGA (Sink) 1.6 IP Core
User Guide Revised January 21, 2016; Author Elod
Gyorgy

[5] Efficient Smart CMOS Camera Based on FPGAs
Oriented to Embedded Image Processing from Sensors
2011, 11, 2282-2303; doi:10.3390/s110302282

[6] Real Time Image Processing based on Reconfigurable
Hardware Acceleration by Steffen Klupsch, Markus
Ernst

[7] FPGA Based ASM implementation for CCD
CameraController R. Srinivasan, K. Anupama, Suneeta,
S. K. Saha and Aditya Rao, Indian Institute of
Astrophysics, Bangalore, 2009 International Conference
on Emerging Trends in Electronic and Photonic Devices
& Systems (ELECTRO-2009)

[8] An Embedded Architecture for Implementation of a
Video Acquisition Module of a Smart Camera System,
Jai Gopa\ Pandey*, Member, IEEE, Abhijit Kannakar,
Member, IEEE, and Chandra Shekhar CSIR - Central
Electronics Engineering Research Institute, Pilani,
Rajasthan, India-333031

IJSER

http://www.ijser.org/

	1 Introduction
	2 Proposed system architecture
	2.1 Architecture Overview
	2.2 The Block Design

	3 Methodology
	4 Comparison with software implementation
	4.1 Important highlights of hardware v/s software approaches

	5 Conclusion

